

Run II Forward Physics

M. Albrow, A. Bhatti, M. Convery, M. Gallinaro, K. Goulianos, K. Hatakeyama, S. Lami, C. Mesropian, K. Terashi

(Collaboration Meeting - Jan. 23, 2003)

- ✓ Forward Physics
- ✓ Run I and beyond
- ✓ Detectors
- ✓ Run II Data

Forward Physics

- Hard Single Diffraction
- Double Diffraction
- Double Pomeron Exchange
- Forward Jets (jet-gap-jet)

. . . .

Diffractive Dijets

- Compare diffractive events to ND
- Measure diffractive structure function
- Calculate R_{SD/ND}
- DSF different in ep (Hera) and pp
- Test of QCD factorization

Measure ξ (momentum loss fraction)

Strategy

- events triggered on a leading antiproton
- Use RP + jet triggers
- Lower ξ/higher Q² than Run 1
- Use MP/BSC to measure event energy/gap

MiniPlugs in CDF-II

- Extend coverage to 3.6<|h|<5.1
- Measure charged and neutrals
- Measure energy and position of both EM and hadron showers
- Forward jets at large rapidity

MiniPlug Conceptual Design

WLS - FIBER (to multi-channel phototube)

- Pb plates in liquid scintillator
- WLS fibers to MAPMT
- Towerless geometry (no dead regions)
- "Tower" size not fixed

MiniPlug Design

East MP (viewed from IP)

- 6 WLS fibers = hexagonÞ 1 MAPMT pixel
- 3 MAPMT outputs added
 P 84 calorimeter "towers (to reduce electronics' cost)
- 4 h rings: 3.6<|h|<5.1
- 18 + 18 "trigger-towers"
- 1 clear fiber to LED

MiniPlug Assembly

MiniPlug Assembled

MP Calibration

- Use slope from ADC distribution
- Tower-to-tower relative calibration with data/MC
- Energy scale from MC
- MC/MBR

- ✓ Pile-up at high luminosity
- √ (Slope-Fit)/Fit ~7% for each h ring
- √ Time dependence (LED)

Event display

- All MP instrumented
- MP/ToF trigger timed in

 Updated diffractive triggers soon (forward jets, etc.)

Detector Status

- All MP instrumented
- MP/ToF timed in the trigger (forward gaps + low multiplicity)

- ✓ RP fiber tracker almost fully instrumented
- Updated diffractive triggers soon

MP Data

MP Prototype

EM Energy Resolution

Run II Data

- Diffractive triggers
- Data sample ~15 pb⁻¹
- RP coincidence + Jets

- ✓ Higher Jet E_T than Run I
- ✓ Good agreement

Rapidity (jet₁, jet₂)

⇒ Gap selects purer diffractive sample

x Distribution

- $x = SE_T e^{-h} / \ddot{0}s$
- Discriminate on x (SD/ND)

Rapidity

Run I PRL ⇒

⇒ Diffractive dijets are boosted away from the recoil antiproton

Df (jet₁-jet₂)

⇒ Diffractive dijets are more back to back

MP Multiplicity

SD and ND

Structure Function

- $x=S_{1.2.3} e^{-h} / \ddot{0}s$
- Ratio SD/ND
- E_T(jet_{1,2,3})>5 GeV

Fit to $dR/dx \sim 1/x^b$

 \Rightarrow b = 0.43

← Run I PRL (b=0.45)

Conclusions

- Measurement of diffractive structure function
- Good agreement with Run I results
- Extend to higher q² and lower x
- Other samples under study (Gap+Jet, ...)
- Work on DPE in progress
- Updated triggers soon (forward jets, ...)